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The distribution of stably trapped particles in a magnetic mirror field evolves according 
to a Fokker-Planck diffusion equation in phase space. In the earth’s trapped radiation helrs 
this diffusion equation has usually been averaged over the field lines. The correct treatment 
of the loss cones demands a dctailcd integration along the field lines. A method is described 
here for integrating the pitch angle diffusion equation by finite difference techniques. The 
pitch angIe variabIe is repiaced by an adiabatic invariant variable, and a triangular coordin- 
ate grid is constructed for the finite differences. The integration can be iterated hack and 
forth along the field lines until convergence is established. Results are presented for trapped 
protons. Applications to the scattering of electrons in the atrnospherc are discussed. 

f. IKTR~DLJ~TION 

The earth’s trapped radiation belts constitute a well known example of stable 
confinement of charged particles in a magnetic mirror geometry. The most important 
loss processes are particle collisions and wave-particle interactions, which result in 
pitch-angle diffusion, followed by escape or absorption at the mirror ends. 

The analytical methods used for treating the radiation belt particles have generally 
been similti to those applied to laboratory mirror machines. There are, however, 
din’erences in scale, geometry, and diagnostic techniques that demand different 
approaches to diEusion into the loss cone. The first approximation in both cases has 
been the bounce-average Fokker-Planck equation, which is valid for the majority 
of the particles [I, 2, 3,4]. The bounce-averaged FP equation is not adequate to 
describe the details of the distribution in and near the loss cones [4, 51. In the following 
Section 2, I will briefly discuss the limitations of bounce-averaging, and the methods 
that have been previously employed to overcome those limitations. IQ Section 3, 
I will present an alternate method for integrating the complete FP equation in the 
trapped mdiation belts. The new method is based on an adiabatic invariant formu- 
lation of the basic equations, and employs finite-difference techniques. In the last 
Section 4, i will discuss some possible applications to related problems. 

An earlier paper has been published on the physical principles and results for 
radiation belt electrons [G]; that paper will hereafter be referred to as Paper I. The 
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calculations described here apply mainly to trapped protons which are conceptually 
easier to understand because the protons are not backscattered from the mirror 
ends, allowing a pure absorption boundary condition. 

2. THE PITCH-ANGLE DIFFUSIGN EQUATIGN 

2.1. The General Form of the Fokker-Planck D@usion Equation 

The Fokker-Planck equation for radiation belt particles can generally be reduced 
to a diffusion-type equation of the form [l, 2, 3, 71 

- {energy loss) + (sources} - (losses} 

where f (t, s, E, a) is the phase space number-density distribution function and 
D,,(t, s, E, a) is the pitch angle dilIusion coefficient. The independent variables are 
time t, distance along a field line s, energy E, and pitch angle z (defined as the angle 
between the momentum vector and field line); 11 is the velocity. The energy loss term 
is important for collisions with particles [l], but can usually be ignored for wave- 
particle interactions in the radiation belts [2, 81. In the following discussion I will 
concentrate on the pitch angle diffusion and ignore the last three { } terms. 

The proper independent variable on the right side of Eq. (1) should depend only 
on the first adiabatic invariant [9]. An advantageous choice is (ignoring the depen- 
dence on Ej 

11 = I - 32 sina UC. 
B 

where B, is the minimum magnetic field strength-or equatorial field-and B = B(s) 
is the local field. Defined this way u is a local variable that becomes equal to co? 01~ 
at the equator. The FP equation can now be written 

g + g (1 - (1 - u) $j’!a g 

= 4 2 (1 - (1 - U) +-jl” & [D,, (1 - (1 - U) +-j”’ (1 - u) g]. (3) 

The distance s is in units of a dimensional parameter R, ; in the earth’s field 
.& = L . (earth’s radius) is the radial distance to the equatorial crossing. 
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2.2. Limits on the Validity of the Bounce-Averaged D$fkion Equation 

If the distribution function is sufficiently uniform along the field Lines, the bounce- 
averaged diffusion equation follows immediately upon an integration of Eq. (3) with 
respect to &/cos a:. For particles outside the loss cone 01~ < &:c (1, 2) 

vvbere 78 is the bounce period and ~1~ = co3 01~ is evaluated at the equator. 
For weak diffusion the diffusion or collision time 7L is >rB , and th.e assumption 

that f is independent of s breaks down near and inside the loss cone. The number of 

particles in the loss cone increases monotonically with s from one mirror end to the 
other [5]. Severai approximations have been introduced to treat the loss cones in the 
radiation belts. Simply ignoring the if/as term and introducing large values of D,> for 
collisions with atmospheric particles gives nearly correct loss rates [I, 7, IO], but does 
not preserve the details of the loss cone distribution. One can, alternatively, integrate 
the ilf/& term between two mirror points, s1 and sp , within the atmosphere to obmin 
a finite term of order 2(& -fI)/~B * 2f/~~ In practice this approximation has been 
used with the equatorial distribution function f(t, u,J 3 f(t, cos” z9) and an ad hoc 
multiplication factor 1~’ Y 2. The resulting equation for the loss cone is similar k9 

Eq. (4), but with an atmospheric loss term -2~fl~ on the right side [I 1, 12, 131. 
The weakness of this approach is thatf(t, UJ does not truly repreesnt a phase space 
distribution function but rather F(t, zco>~(~~(~~)~‘~), w  h ere F is the total distriburion 
function for all the particles contained within a tube of fietieid lines El]. The linear loss 
term is of little use when appreciable numbers of particles are backscattered from the 
atmosphere [6]. 

An approach that has proved useful for treating the spatially dependent distri- 
bution function in laboratory mirror machines is an expansion based on the scaling 
ratio h = T~/T~ [5]. The expansion method does not seem to be readily applicable 
to the highly inhomogeneous radiation belts where the diffusive interactions may be 
concentrated both near the central plane (equator) and at the mirror ends [I. 21. 
The scaling ratio /\z is usually extremely small for radiation belt particles mirroring 
above the atmosphere, but increases rapidly as the mirror points dip into the 
atmosphere, approaching a value of unity. The particles that just skim the top of ;he 
atmosphere may make many bounces before they are Iost [I], thereby violating one 
of the principal assumptions of the expansion, namely that diffusion at the mirror ends 
is negligible [5]. 

The solutions of the bounce averaged diffusion equation are of interest here because 
they provide a useful starting point for an iterative solution of the FP equation. 
They also provide a basis for comparisons with the correct spatially dependent 
solutions. Consider a steady state for which ;ifiat = 0. 
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Simple solutions can be found for a diffusion coefficient of the form 

(5) 

where D is a dimensionless constant. If the source that maintains the particles vanishes 
in the loss cone, the solution there is [l I] 

(6) 

FIG. 1. The bounce-average pitch angle distributions in and near the loss cone. The examples 
plotted are for 50 keV protons at L = 4; for other cases the solutions to the diffusion equation inside 
the loss cone (sin ol,/sin xC = sin LX < 1) will be shifted upward or downward with slight changes 
in the shapes of the right-hand portions (trapped) of the curves. 
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where I0 and I1 are Bessel functions of imaginary argument. The loss cone solutions 
depend on the parameter D/w; the trapped particle solutions beyond CL, depend also 
on the length of the field line. Solutions of Eq. (4) are plotted in Fig. 1 for 50 keV 
protons at L = 4 and a source proportional to (sin2 01~ - sin” EJ/T~ = (u, - ~r~),/~~ ; 
NJ was taken equal to 1. 

3. INTEGRATION OF THE FOKKER-PLANCK EQUATION 

Integration of the FP equation (3) poses some novel difficulties, manily because of 
the distortion of the domain of integration. The domain of integration in the it, s plane 
is illustrated in Fig. 2 for a dipole field. The transformation from local pitch angle 
to adiabatic invariant coordinate u has split the domain of integration into two parts, 
joined along the curve of mirror points, u = IL&). The two separate regions are 
superimposed in Fig. 2, with the mirror point curve on the left. When it is necessary 
to distinguish the two regions they may be Iabelled “DOWN” or ‘“UP”. (1n effect the 
two regions correspond to particles travelling in opposite directions with local pirch 
angles 0 < 01 < 90” and 90” < oi < 180”, respectively.) 

L-00;!.38Oi 

( 

FIG. 2. The domain of integration in the II, s plane. Only the s > 0 half is shown. The Iocclrion 
of rhe intersection with the atmosphere is indicated by horizontal dashed lines at s, , with the corrcs- 
ponding L value listed to the side. 
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Equation (3) lends itself readily to finite difference methods for its solution. How- 
ever, the steep gradients expected in f at the edge of the loss cone necessitate com- 
pressing a large number of integration points into the vicinity of u,,(s) = u, at the 
atmosphere, s = s, . One way this can be accomplished is by constructing polynomials 
P,(i) and P,(j) to represent the integration variables u and s as functions of the grid 
point indices, i and j. The errors usually associated with highly non-uniform grids are 
minimized if the polynominals over adjacent ranges are continuous in their first and 
second derivatives [14]. Furthermore there are advantages in using the same poly- 
nominal to represent both u and S. Let P be a polynominal in i orj, and 

The FP equation for a steady state, 2f/at = 0, then becomes a finite difference 
equation, 

af- 6 D 4& 4, 
[ 

(1 - Pi) 1/1 pi Y 
rj -i 

___ 
ma V ( dB(Sj)/dSj 1 (l- pJ (1 - (1 - Pj) (1 - Pj) 1 I 

+ (sources) 
(P,;)” 6i 

= $ [9ej -$$I + {sources> (8) 

where Pj' is the customary notation for a derivative evaluated at i. The extension to 
non-equilibrium cases is straightforward, though special care would be needed to 
achieve adequate time steps without excessive computation time. The mirror points 
now fall on the diagonal line i = j; each,j row contains one less (or more) point than 
the adjacent row. 

The matrix form of the implicit difference equations is obtained by finding the 
averages of Sf/Sj over each box of four points (i,j), (i, j + I), (i f I, j + l), (i + l,j), 
and multiplying by 9~+lk2,1+liz evaluated in the center of the box. This scheme has the 
advantage that the same coefficients appear in the difference equations for the DOWN 
and UP integrations. The finite difference equation for both DOWN and UP can be 
formulated for the increments di = A,j, -,fi,j, between the rows j and j + I, thus 

c:+, = 1/2S9-1,i+,/, CW 

(Z,i+l = 1/2gi+l,j+l/2 (9c) 

cij = -cc:,+l - c;,i+, . (94 

At the line i = j, 9’ij vanishes so the difference equation for the trapezoidal box 
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bounded by the points (j,j), (j + 1, j + l), (j + 2,j f 1) and (j $ 2,j) does not 
contain the expected term with fjj: 

(1 - Cj+l,j*.l) dj+I - Cj+l,j+Jjyi = 2Cj+,,j+, f 2CjL,,j+&+2 (18z) 

Cj+,,j+z = -Cj+,,j+l = 1/2Dj+s!s,j+l:l - (lob) 

The right and left halves of the grid in Fig. 3 are thereby effectively disconnected. 
Ordinarily one would expect that a step from one j line to the next would invoke 
transfers of particles across the mirror point curve-from local pitch angles less that 
90” (right half of grid) to local pitch angles greater than 90” (left half of grid), and 
vice-versa. However, a peculiar property of the FP equation (3) for small angie 
scattering is that the current (the [ ] bracketed term) across c: = 90” is zero-there is a 
net balance of particles being deflected toward either direction. The integration is spiit 
into two sets of difference equations, coupled only through the atmospheric boundayj 
condition and the identity of DOWN and UP fluxes on the line of mirror points. 

FIG. 3. The finite-difference integration grid. The points at which the distribution function is 
to be evaluated are denoted by solid circles. The boundary conditions are applied at the points 
denoted by solid squares. The indices i and j are presumed equal. to 1 in the center and increase toward 
the outer edges. 

Integrations were carried out by stepping forward from one j line to the next using 
only half the points along each line (e.g., DOWN). On reaching the atmosphere at 
j = IZ, the direction of integration was reversed to fill in the opposite side of the grid 
(e.g., UP). The reverse integration picked up an additional grid point J;, j at each step, 
along with the last previously computed value of fjj (open circles in Fig. 3). The 
iterative procedure is equivalent to an integration with periodic boundary conditions; 



308 G. T. DAVIDSON 

and was continued in a clockwise direction around Fig. 3 until satisfactory convergence 
was attained. 

The unknown values off were calculated at the interior points (solid circles) of the 
grid. The total number of unknowns is 2[(1n - n)(172 + rz - 1) + (12 - I)] + 1. 
Boundary conditions were specified along the lines j = rz (atmosphere) and i = nz. 
For trapped protons the atmospheric boundaries were regarded as perfect absorbers 
at an altitude of 100 to 120 km [15, 161. Whenever backscatter from the atmosphere 
becomes important, as in the case of trapped electrons, it is necessary to continue the 
integration down through the atmosphere, using a diffusion coefficient D,, appro- 
priate to particle collisions, and including an energy loss term [6, 171. Conservation of 
current (the [ ] term in Eq. (8)) leads to a derivative boundary condition: 

= (L-e -.fxl - PI-WY - cfnl-1 -fN - pm-2)“. (11) 

The difference equations plus these boundary conditions leaves one fewer equations 
than unknowns. An obvious place to specify the remaining condition is at the center 
point, i = j = 1. In a completely symmetric grid a derivative condition af/arn = 0 
is useful. 

3.2. Numerical Integration and Results 

The results of the numerical integration of Eq. (8) are sensitive to the values of D,, 
and to the boundary condition at s, . The value of D,, is, however, largely unknown. 
For small loss cones (L > 2) the results are expected to be more sensitive to the 
magnitude than to the form of D,, . For the sample calculations I assumed the average 
values given by Eq. (5), and let DaDi be a function solely of U. The approximate values of 
D,, are (18). 

V sin2 01, 
Dm, = D 2R,Z 

Z E l/4 $ % cos 01 ds 

(1-W 

‘v .457511 + .2326(1 - u)[l - (1 - z.@/~]. (12b) 

Ideally it would be desirable to have an integration grid that optimizes the values 
of the finite difference coefficients. For computational efficiency the Cii’s should be 
near their stability limit [19]. 

c;t > -1. (13) 

It is apparent that such an optimum computational grid for very small values of D 
would be impractically large. The difficulty is rooted in the extreme smallness of the 
ratio of 7B (seconds) and 7t (up to months of years). The integration grid was therefore 
optimized around the cutoff, u, ; using third degree polynomials to represent lii in 
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the loss cone and fourth or fifth degree polynomials for i < 11. Solutions of Eq. (4) 
were used to start with a very accurate approximation over most of the range of u 
and s. Symmetry about the equator was assumed in the sample cases, and the compu- 
tation was merely stopped and turned around at j = I. After a few iterations (~20) 
quite satisfactory solutions were obtained in and near the loss cone. With the partially 
optimized grids the number of points needed to describe the loss cone portion of the 
distribution increased approximately with log(D), from 8 x 8 points at D ‘v .I to 
40 x 40 points at D iii lo-“. 

FIG. 4. Sample computed distributions of 50 keV protons at L = 4 as they would be observed 
immediately above the atmosphere. The diffusion coefficients (defined in lhe text) yield the same 
bounce-averaged diffusion coefficients as applied to Figure 1. The Ieff half of the figure is the local 
pitch-angie distribution at the top of the atmosphere, up to sin (90,) = 1. The dashed cnrves on the 
right are the phase space densities of locally mirroring particles at B = B,,(! - ;I). 
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A realistic choice of a source distribution is one whose strength falls ofi rapidly 
from 01 = 90” toward the loss cones, and which is concentrated near the equator. 
With these limitations the results for the loss cone distribution are insensitive to the 
details of the source. An adequate representation was found to be a source that only 
entered the calculation at the equator (j = l), with a pitch angle dependence (u, - ui), 
similar to that of Fig. 1. 

Figure 4 shows the results of sample calculations for 50 keV protons entering 
the atmosphere at L = 4. The cases illustrated correspond to the same set of diffusion 
coefficients as in Fig. 1. The abscissa from 0 to 1 is equivalent to the sine of the local 
pitch angle. Properly the local distributions should be cut off at sin CI = 1, but the 
loss cone distributions here have been joined to the phase space densities of locally 
mirroring protons at B = B,,/(l-u,). This provides an unambiguous definition of the 
trapped distribution, and is equivalent to the definition of the bounce averaged 
F(‘Cr, uJ. The trapped distributions on the right side of the figure are nearly identical 
with the bounce-averaged values of Fig. 1. 

Trial calculations at L values other than 4 gave similar results in the loss cone. 
Depending on the D value, a grid of less than 100 x 100 points was adequate for all 
of the trial cases. The number of iterations necessary to achieve a satisfactory result 
depends on the grid, the type of boundary condition at the atmosphere, and the 
accuracy of the initial approximations. Test cases were run to as many as 60 iterations 
without evidence of instabilities, though a smaller number is probably adequate for 
any realistic problem. A complete integration could be run on a medium capability 
computer (CDC 6600/IBM 360/Univac 1110) in 1 to 10 minutes. The running time is, 
of course, longer for the electron case, where diffusion and energy loss in the 
atmosphere must be taken into account. 

4. DISCUSSION AND CONCLUSIONS 

It was no surprise that the loss cone distributions of Figs. 1 and 4 bear a superficial 
resemblance to one another, even though they represent different aspects of the 
distribution function. Properly, Fig. 1 should must nearly represent the distribution 
in the equatorial plane. Close agreement with the true distribution at the top of the 
atmosphere can be achieved by adjusting the loss rates in the bounce-averaged 
equation by a factor NJ := 2, though such a consideration does not seem to have 
entered the reasoning behind the original derivation of the loss term [II, 12, 131. 
The bounce-averaged method, which is much simpler to execute, can therefore be 
used with good chances of success in restricted types of problems. But, when detailed 
pitch-angle and spatial distributions are desired in the loss cone, the complete FP 
equation must be solved. 

That the detailed solutions for the cases discussed here resemble the bounce- 
averaged solutions leads us to suspect that, for suitable cases, the bounce averaged 
equation might be of use for electrons in the loss cone. The factor w  might then be 
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approximated by an empirical function of energy and pitch-angle. The values of TV 
would have to be derived from the results of detailed integrations. 

The most notable feature of the calculations described here is the utilization of the 
vanishing current in the FP equation at local pitch angles of 90”. This made possible 
the separation of DOWN and UP integrations and a consequent improvement in the 
efkiency of the computer codes. Similar methods, taking advantage of the converging 
field and particie mirroring, should also be applicable to the penetration of energetic 
particles into the atmosphere. Several computer codes have been developed to tre5: 
electron scattering in the atmosphere [16, 20, 213, including the one employed in the 
trapped electron calculations of Paper I [6]. Apparently nolIe of the existing electron 
scattering codes e-mploys an explicitly adiabatic-invariant formulation. This -may 
reduce their ability to treat mirroring effects and to handle pitch angle distributions 
with sharp gradients near 90” pitch-angles. An adiabatic invariatlt method is directly 
applicable, and might alleviate some of the computational difkulties encountered 
in the atmospheric scattering codes. The methods described above could also reduce 
(or eliminate) the need for iterations of the spatial integration. 
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